- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Srivastava, Vibha (2)
-
Cherati, Sajedeh Rezaei (1)
-
Counce, Paul Allen (1)
-
Dharwadker, Dominic (1)
-
Esguerra, Manuel (1)
-
Gann, Peter James (1)
-
Gann, Peter James Icalia (1)
-
Khodakovskaya, Mariya (1)
-
Vinzant, Kari (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Starch biosynthesis is a complex process underlying grain chalkiness in rice in a genotype-dependent manner. Coordinated expression of starch biosynthesis genes is important for producing translucent rice grains, while disruption in this process leads to opaque or chalky grains. To better understand the dynamics of starch biosynthesis genes in grain chalkiness, six rice genotypes showing variable chalk levels were subjected to gene expression analysis during reproductive stages. In the chalky genotypes, peak expression of the large subunit genes of ADP-glucose pyrophosphorylase (AGPase), encoding the first key step in starch biosynthesis, occurred in the stages before grain filling commenced, creating a gap with the upregulation of starch synthase genes, granule bound starch synthase I (GBSSI) and starch synthase IIA (SSIIA). Whereas, in low-chalk genotypes, AGPase large subunit genes expressed at later stages, generally following the expression patterns of GBSSI and SSIIA. However, heat treatment altered the expression in a genotype-dependent manner that was accompanied by transformed grain morphology and increased chalkiness. The suppression of AGPase subunit genes during early grain filling stages was observed in the chalky genotypes or upon heat treatment, which could result in a limited pool of ADP-Glucose for synthesizing amylose and amylopectin, the major components of the starch. This suboptimal starch biosynthesis process could subsequently lead to inefficient grain filling and air pockets that contribute to chalkiness. In summary, this study suggests a mechanism of grain chalkiness based on the expression patterns of the starch biosynthesis genes in rice.more » « less
-
Gann, Peter James Icalia; Dharwadker, Dominic; Cherati, Sajedeh Rezaei; Vinzant, Kari; Khodakovskaya, Mariya; Srivastava, Vibha (, The Plant Journal)SUMMARY Grain chalkiness is a major concern in rice production because it impacts milling yield and cooking quality, eventually reducing market value of the rice. A gene encoding vacuolar H+translocating pyrophosphatase (V‐PPase) is a major quantitative trait locus inindicarice, controlling grain chalkiness. Higher transcriptional activity of this gene is associated with increased chalk content. However, whether the suppression ofV‐PPasecould reduce chalkiness is not clear. Furthermore, natural variation in the chalkiness ofjaponicarice has not been linked withV‐PPase. Here, we describe promoter targeting of thejaponica V‐PPaseallele that led to reduced grain chalkiness and the development of more translucent grains. Disruption of a putative GATA element by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated protein 9 suppressedV‐PPaseactivity, reduced grain chalkiness and impacted post‐germination growth that could be rescued by the exogenous supply of sucrose. The mature grains of the targeted lines showed a much lower percentage of large or medium chalk. Interestingly, the targeted lines developed a significantly lower chalk under heat stress, a major inducer of grain chalk. Metabolomic analysis showed that pathways related to starch and sugar metabolism were affected in the developing grains of the targeted lines that correlated with higher inorganic pyrophosphate and starch contents and upregulation of starch biosynthesis genes. In summary, we show a biotechnology approach of reducing grain chalkiness in rice by downregulating the transcriptional activity ofV‐PPasethat presumably leads to altered metabolic rates, including starch biosynthesis, resulting in more compact packing of starch granules and formation of translucent rice grains.more » « less
An official website of the United States government
